Convolution with numpy

A convolution is a way to combine two sequences, x and w, to get a third sequence, y, that is a filtered version of x. The convolution of the sample xt is computed as follows:

It is the mean of the weighted summation over a window of length k and wt are the weights. Usually, the sequence w is generated using a window function. Numpy has a number of window functions already implemented: bartlett, blackman, hamming, hanning and kaiser.

Advertisements
This entry was posted in Uncategorized. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s